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Abstract

Previous studies have shown that cardiac-specific overexpression of metallothionein (MT) inhibits progression of dietary copper

restriction-induced cardiac hypertrophy. Because copper and zinc are critically involved in myocardial response to dietary copper restriction,

the present study was undertaken to understand the effect of MT on the status of copper and zinc in the heart and the subsequent response to

dietary copper restriction. Dams of cardiac-specific MT-transgenic (MT-TG) mouse pups and wild-type (WT) littermates were fed copper-

adequate (CuA) or copper-deficient (CuD) diet starting on the fourth day post delivery, and the weanling mice were continued on the same

diet until they were sacrificed. Zinc and copper concentrations were significantly elevated in MT-TG mouse heart, but the extent of zinc

elevation was much more than that of copper. Dietary copper restriction significantly decreased copper concentrations to the same extent in

both MT-TG and WT mouse hearts, and decreased zinc concentrations along with a decrease in MT concentrations in the MT-TG mouse

heart. Copper deficiency-induced heart hypertrophy was significantly inhibited, but copper deficiency-induced suppression of serum

ceruloplasmin or hepatic Cu,Zn-SOD activities was not inhibited in the MT-TG mice. These results suggest that elevation in zinc but not in

copper in the heart may be involved in the MT inhibition of copper deficiency-induced cardiac hypertrophy.

D 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Previous studies using mouse model have demonstrated

that dietary copper restriction causes heart hypertrophy

with defected function [1–3]. Cardiac-specific overexpres-

sion of metallothionein (MT) in transgenic mice inhibits

progression of heart hypertrophy induced by dietary

copper deficiency [4]. MT is a metal binding protein,

and under physiological conditions, MT predominantly

binds to zinc [5,6]. However, zinc can be replaced by

copper or other metals such as cadmium under the con-

dition of overload of these metals [7]. Because the status

of copper and zinc in the heart greatly affects myocardial

response to dietary copper restriction, the inhibitory effect
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on copper deficiency-induced heart hypertrophy in the

cardiac-specific MT-overexpressing transgenic mice may

relate to MT manipulation of the status of these minerals.

However, it is unknown what are the metals that are

bound to MT in the transgenic mouse heart in that the

expression of MT is controlled by cardiac a-myosin heavy

chain promoter [8].

The present study was undertaken to specifically

examine the effect of MT overexpression on copper and

zinc status in the heart and the subsequent response to

dietary copper restriction. In particular, we focused on

possible correlation between MT manipulation of copper

status and the inhibition of copper deficiency-induced heart

hypertrophy in the cardiac-specific MT-overexpression

transgenic mice. The results obtained demonstrate that

although copper concentrations were elevated in the

MT-overexpressing transgenic mouse heart, copper defi-

ciency caused depletion of copper in the heart to the

same level between the transgenic mice and the wild-type

(WT) controls. However, the elevation of zinc in the
chemistry 18 (2007) 714–718
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MT-overexpressing transgenic mouse heart was more

predominant. These findings thus suggest MT manipulation

of zinc rather than copper status in the heart is more likely

involved in the inhibition of copper deficiency-induced

heart hypertrophy.
2. Materials and methods

2.1. Animals and treatment

FVB mice were originally obtained from Harlan Bio-

products for Science, Inc., (Indianapolis, IN, USA) and

maintained at the University of Louisville animal facilities.

The cardiac-specific MT-TG mice were produced from the

FVB stain as described previously [8]. The MT-TG mice

were then bred with the same strain of WT mice. They

were housed in plastic cages at 228C on a 12-h light/dark

cycle. Dams of the pups (both heterozygous MT-TG mice

and their WT littermates) were fed copper-deficient (CuD)

or copper-adequate (CuA) diet starting on the fourth day

post delivery. The pups were weaned on the 21st day after

birth and the weanling mice were continued on the same

diet as their dams until they were sacrificed at 3, 4 or

5 weeks after CuD feeding (combined pre- and post-

weanling feeding). The number of mice used at each time

point for each treatment group was 6. The animals had free

access to doubly distilled water. The CuA and CuD diets

(AIN-93 diet) were prepared according to Reeves et al. [9]

and the primary ingredients were cornstarch (53%), casein

(20%), sucrose (10%) and soybean oil (7%). Vitamins and

minerals were provided in the diet exactly as described

previously [9]. The CuA diet included an addition of 6 mg

of Cu/kg diet in the form of CuSO4, and the corresponding

weight of cornstarch was added to the CuD diet. Analyses

of the diets for Cu concentrations yielded 6.089 mg Cu/kg

diet for CuA and 0.348 mg Cu/kg diet for CuD diet. All

procedures were approved by the AAALAC-certified

University of Louisville Institutional Animal Care and

Use Committee.

2.2. Tissue harvest

At the end of the feeding experiment and after an over-

night fast, each animal was anesthetized with an intraper-

itoneal injection of sodium pentobarbital (65 mg/kg body

weight, Vet Labs, Lenexa, KS, USA). Blood was withdrawn

from the abdominal vena cava and serum was separated

with a Serum Separator (Becton Dickenson, Inc., Ruth-

erford, NJ, USA) within 30 min. An incision was made in

the inferior vena cava and the heart was perfused with cold

0.9% NaCl. The heart was then removed, opened, washed,

dried with paper tissue and weighed. The left ventricle was

used for copper, zinc and MT determinations. The liver was

also perfused with cold 0.9% NaCl through the portal vein,

and portions of the liver were excised. All the tissue samples

were either used immediately or placed in liquid nitrogen,

then stored at �808C for later analysis.
2.3. Mineral concentrations

Mineral concentrations in the heart were measured using

inductively coupled argon plasma emission spectroscopy

(model 35608, Thermo ARL-VG Elemental, Franklin, MA,

USA) after lyophilization and digestion of the tissues with

nitric acid and hydrogen peroxide [10]. Dietary Cu

concentrations were analyzed by using a dry-ashing

procedure, which was followed by dissolution of the residue

in aqua regia and measurement by atomic absorption

spectrophotometry (model 503, Perkin Elmer, Norwalk,

CT, USA). Trace element contents of National Institute of

Standards and Technology (NIST, Gaithersburg, MD, USA)

reference samples were within the specified ranges estab-

lished by NIST, thus validating our assay procedure.

2.4. Serum ceruloplasmin

Serum ceruloplasmin concentrations were determined

by its p-phenylenediamine (PPD) oxidase activity [11].

The oxidation of PPD at pH 5.4 yields a product that is

readily detectable colorimetrically at 530 nm. The rate of

product formation is proportional to the concentration of

ceruloplasmin.

2.5. Cu,Zn-Superoxide dismutase

Total superoxide dismutase (SOD) activity was deter-

mined by a NBT assay according to Spitz and Oberley

[12]. Mn-SOD activity was assayed by adding NaCN

(5 AM) to the assay buffer, and the Cu,Zn-SOD was

calculated by subtracting the Mn-SOD activity from the

total SOD activity.

2.6. Metallothionein

Total heart tissue MT concentrations were determined by

a cadmium–hemoglobin affinity assay [13] as described

previously [8].

2.7. Statistical analysis

Data were analyzed initially by two-way ANOVA.

Scheffe’s F-test was employed for further determination of

the significance of differences. Differences between MT-TG

and WT mice were considered significant at Pb.05. The

data are presented as meanFS.D. values from the indicated

number of animals for each treatment.
3. Results

The data presented in Table 1 summarize the effect of

dietary copper deficiency on several parameters after the

mice fed CuD diet for 5 weeks. Serum ceruloplasmin

concentrations were significantly decreased in both MT-TG

and WT mice receiving CuD diet for 5 weeks. Hepatic

Cu,Zn-SOD, not Mn-SOD activities, was also depressed in

these animals. There were no significant differences in

these biochemical changes induced by copper deficiency

between MT-TG and WT mice. Cardiac hypertrophy, as



Table 3

MT concentrations in the heart of WT and MT-TG mice fed CuA or CuD

diets for 5 weeks

MT (Ag/g protein)

WT/CuA 4.9F0.7

WT/CuD 5.1F1.7

MT/CuA 127.7F6.54

MT/CuD 116.4F4.14,44

Data are expressed as meanFS.D. (n =6).

4 Significantly different from controls (WT/CuA) ( P b.05).

44 Significantly different from MT/CuA controls ( P b.05).

Table 1

Changes in serum ceruloplasmin and hepatic Cu,Zn-SOD and Mn-SOD

activities and heart hypertrophy in WT and MT-TG mice fed CuA and CuD

diets for 5 weeks

Ceruloplasmin

(Ag/ml)

Cu,Zn-SOD

(U/mg protein)

Mn-SOD

(U/mg protein)

HW/BW

(mg/g)

WT/CuA 109.3F14.3 150.9F8.7 4.9F1.6 5.2F0.6

WT/CuD 23.7F9.64 88.5F12.64 4.4F1.1 12.1F3.64

MT/CuA 112.5F9.6 145.1F11.1 4.9F1.8 5.4F0.2

MT/CuD 31.0F7.94 90.5F9.24 4.0F1.4 7.8F1.64,44

HW/BW indicates heart weight (mg)/body weight (g).

Data are expressed as meanFS.D. (n =6)

4 Significantly different from controls (WT/CuA) ( P b.05).

44 Significantly different from WT/CuD group ( P b.05).
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measured by the ratio of heart weight to body weight, was

observed in both MT-TG and WT mice fed CuD diet for

5 weeks. However, there was a significant inhibition in the

copper deficiency-induced heart hypertrophy in the MT-TG

mice (Table 1).

Mineral concentrations in MT-TG mouse heart in

comparison to those in WT mice were analyzed. These

minerals include copper, zinc, iron, calcium, potassium,

sodium, magnesium, manganese and phosphorus. The

minerals with their concentration changes in the heart of

MT-TG mice and alterations by dietary copper restriction

included copper, zinc and iron. Others remained the same

between MT-TG and WT mice (data not shown). A

foremost change in the mineral status was that total zinc

concentrations in the heart were increased about 2.5-folds in

the MT-TG mice (Table 2), and this high level was not

affected by dietary copper restriction during early feeding.

There was a significant decrease in zinc concentrations in

the heart of MT-TG mice fed CuD diet relative to those fed
Table 2

Mineral concentrations in the heart of WT and MT-TG mice fed CuA and

CuD diets for the time indicated

Week 3 Week 4 Week 5

Zinc concentration (lg/g tissue)

WT/CuA 72.5F3.8 70.2F7.3 88.9F25.6

WT/CuD 85.6F6.8 70.4F1.3 69.8F12.4

MT/CuA 173.1F6.54 172.6F10.34 190.3F 9.34

MT/CuD 181.2F14.04 187.6F4.34 165.6F10.14,44

Copper concentration (lg/g tissue)

WT/CuA 21.9F2.1 23.9F0.7 25.1F2.7

WT/CuD 15.8F0.84 9.7F1.34 7.1F3.34

MT/CuA 36.8F1.74 35.2F1.94 35.8F0.84

MT/CuD 15.9F4.74,44 8.4F0.74,44 5.1F0.54,44

Iron concentration (lg/g tissue)

WT/CuA 174.2F51.1 195.1F26.2 198.3F50.3

WT/CuD 173.1F21.4 266.6F17.14 203.5F13.0

MT/CuA 153.1F30.5 179.5F34.6 183.8F20.8

MT/CuD 159.9F62.4 233.9F8.54 227.7F26.34

Data are expressed as meanFS.D. (n =6).

4 Significantly different from controls (WT/CuA) ( P b.05).

44 Significantly different from MT/CuA controls ( P b.05).
CuA diet after 5 weeks. A significant increase in total

copper concentrations in the MT-TG mouse heart was also

observed. However, dietary copper restriction decreased the

copper concentration to the same level found in the WT

mice after feeding these animals with CuD diet for 3 weeks

(Table 2). Iron concentrations in the heart of MT-TG mice

fed CuA diet were stable and lower (not statistically

significant) relative to WT mice during the feeding

experiment. In contract, iron concentrations increased in

the heart of both WT and MT-TG mice fed CuD diet for

4 weeks and remained higher in the MT-TG mouse heart

after fed CuD diet for 5 weeks.

As shown in Table 3, MT concentrations in the heart of

MT-TG mice fed CuA diet were about 26-folds higher than

that in the WT mice. Dietary copper restriction did not

change MT concentrations in the WT mouse heart, but

decreased MT concentrations in the heart of MT-TG mice,

being about 22-folds higher than those of WT mice.
4. Discussion

The results obtained from this study provide important

information regarding the effect of MT overexpression on

copper and zinc status in the heart and the subsequent

response to dietary copper restriction. Although MT

elevation caused an increase in copper concentrations in

the heart, the inhibitory effect on copper deficiency-

induced heart hypertrophy in the MT-TG mice unlikely

resulted from the copper elevation. Upon dietary copper

deficiency, copper depletion in the heart reached the same

low level between the MT-TG and WT mice, suggesting

MT elevation did not preserve copper pool under the

dietary deficient condition. On the other hand, zinc

concentrations in the heart were significantly elevated,

and the extent of elevation was much more than that of

copper. Many studies have demonstrated the critical role of

MT in regulation of zinc homeostasis [14–16]. In

particular, under the condition of redox potential changes

such as oxidative stress, zinc is released from MT to

perform its regulatory function of cellular protection

against oxidative stress [14–16]. Since oxidative stress is

involved in copper deficiency-induced heart hypertrophy

[17–20], the increased availability of zinc under oxidative

stress conditions in the MT-TG mouse heart is most likely
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involved in the inhibition of copper deficiency-induced

heart hypertrophy.

Mobilization of zinc from MT by an oxidative reaction

may either constitute a general pathway by which zinc is

distributed in the cell or it may be restricted to conditions of

stress where zinc is needed in antioxidant defense systems

[15,16]. Zinc released from MT is subsequently taken up by

plasma membranes, where zinc stabilizes the membrane and

prevents membrane lipid oxidative damage [21,22]. In

addition, released zinc may suppress lipid peroxidation by

affecting many different cellular functions, such as decreas-

ing iron uptake and inhibiting NADPH-cytochrome c

reductase [23].

If oxidative stress triggers zinc release from MT and the

cardiac protection by MT against oxidative injury is

mediated by the released zinc, a dynamic change in the

level of zinc and its binding to MT during oxidative stress

condition would occur. In conjunction with zinc release

under oxidative stress, MT would become oxidized and the

total concentrations of MT would be decreased due to the

fact that metal binding makes MT resistant to microsomal

degradation [24]. The results obtained here indeed showed a

decrease in MT concentrations in the MT-TG mouse hearts

after feeding CuD diet for 5 weeks. This decrease was

accompanied by the same extent of decrease in zinc

concentrations, suggesting the coordinating roles of zinc

and MT in myocardial protection against oxidative stress

induced by dietary copper deficiency.

Under the same oxidative stress condition, copper would

also be released from MT in the MT-overexpressing mouse

heart. However, the increase in copper concentrations due to

MT elevation was much less than that of zinc; 50% increase

in copper concentrations vs. 2.5-fold increase in zinc

concentrations. This increase in copper concentrations did

not appear to be able to compensate for the depletion of

copper concentrations in the heart due to dietary copper

restriction, as evidenced by the fact that dietary copper

deficiency caused the same depletion in copper concen-

trations between MT-TG and WT mice. Therefore, the

inhibition of copper deficiency-induced heart hypertrophy in

the MT-TG mice would not result from the elevation of

copper concentrations.

Dietary copper deficiency caused an increase in iron

concentrations in the heart. Since iron has been shown to be

importantly involved in oxidative stress [25–27], the

elevation of iron in the heart may be related to copper

deficiency-induced oxidative stress and heart hypertrophy.

However, the present results would suggest that the elevation

of iron concentrations in the heart may not be responsible

for the heart hypertrophy. Dietary copper deficiency in-

creased iron concentrations in both WT and MT-TG mouse

hearts, but the elevation in the MT-TG mouse hearts lasted

longer, although the reason is unknown. However, heart

hypertrophy was inhibited in the MT-TG mice.

This study thus demonstrates that MT elevation in the

heart causes a significant increase in both copper and zinc
concentrations, but MT inhibition of dietary copper defi-

ciency-induced heart hypertrophy is likely related to the

elevation of zinc concentrations.
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